首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   126篇
  国内免费   123篇
  2023年   12篇
  2022年   13篇
  2021年   20篇
  2020年   24篇
  2019年   43篇
  2018年   41篇
  2017年   34篇
  2016年   48篇
  2015年   41篇
  2014年   67篇
  2013年   139篇
  2012年   53篇
  2011年   77篇
  2010年   61篇
  2009年   90篇
  2008年   81篇
  2007年   61篇
  2006年   46篇
  2005年   62篇
  2004年   65篇
  2003年   56篇
  2002年   58篇
  2001年   33篇
  2000年   34篇
  1999年   27篇
  1998年   25篇
  1997年   21篇
  1996年   19篇
  1995年   22篇
  1994年   30篇
  1993年   21篇
  1992年   19篇
  1991年   21篇
  1990年   12篇
  1989年   11篇
  1988年   6篇
  1987年   9篇
  1986年   7篇
  1985年   19篇
  1984年   13篇
  1983年   12篇
  1982年   12篇
  1981年   2篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
排序方式: 共有1586条查询结果,搜索用时 46 毫秒
1.
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell–cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.  相似文献   
2.
3.
Two Saccharomyces cerevisiae strains with different degrees of ethanol tolerance adapted differently to produced ethanol. Adaptation in the less ethanol-tolerant strain was high and resulted in a reduced formation of ethanol-induced respiratory deficient mutants and an increased ergosterol content of the cells. Adaptation in the more ethanol-tolerant strain was less pronounced. Journal of Industrial Microbiology & Biotechnology (2000) 24, 75–78. Received 22 June 1999/ Accepted in revised form 06 October 1999  相似文献   
4.
The capabilities of immobilized Fusarium oxysporum f. sp. lini, Mucor sp., and Saccharomyces cerevisiae in fermenting pentose to ethanol have been compared. S. cerevisiae was found to have the best fermentation rate on d-xylulose of 0.3 g l?1 h?1. By using a separate isomerase column for converting d-xylose to d-xylulose and a yeast column for converting d-xylulose to ethanol, an ethanol concentration of 32 g l?1 was obtained from 10% d-xylose. The ethanol yield was calculated to be 64% of the theoretical yield.  相似文献   
5.
Nuclear Magnetic Resonance (NMR) spectroscopy is proving to be a very valuable technique for characterizing the metabolic status of a range of microbial fermentations. This non-invasive method allows us not only to determine the presence of particular metabolites, but also to monitor reaction rates, enzyme activities and transport mechanisms in vivo. Despite the low levels of the carbon-13 isotope (1.1%), natural-abundance 13C-NMR studies have proven useful in monitoring the progress of various fermentation processes. Furthermore, 31P-NMR can provide noninvasive information relating to cellular metabolism, and on the energy status of the cells. This results from the facility with NMR to identify various nucleotide phosphates and other energy-rich compounds in the cell, as well as to characterize changes in the intracellular pH from the chemical shifts of internal phosphate and other phosphorylated intermediates. In this review, we will summarize the use of NMR as an analytical tool in biotechnology and also discuss examples that illustrate how NMR can be used to obtain significant information on the characteristics of ethanol fermentations in both yeasts and bacteria.  相似文献   
6.
Isomerization of disaccharides (maltose, isomaltose, cellobiose, lactose, melibiose, palatinose, sucrose, and trehalose) was investigated in subcritical aqueous ethanol. A marked increase in the isomerization of aldo-disaccharides to keto-disaccharides was noted and their hydrolytic reactions were suppressed with increasing ethanol concentration. Under any study condition, the maximum yield of keto-disaccharides produced from aldo-disaccharides linked by β-glycosidic bond was higher than that produced from aldo-disaccharides linked by α-glycosidic bond. Palatinose, a keto-disaccharide, mainly underwent decomposition rather than isomerization in subcritical water and subcritical aqueous ethanol. No isomerization was noted for the non-reducing disaccharides trehalose and sucrose. The rate constant of maltose to maltulose isomerization almost doubled by changing solvent from subcritical water to 80 wt% aqueous ethanol at 220 °C. Increased maltose monohydrate concentration in feed decreased the conversion of maltose and the maximum yield of maltulose, but increased the productivity of maltulose. The maximum productivity of maltulose was ca. 41 g/(h kg-solution).  相似文献   
7.
The fermentation of carbohydrates and hemicellulose hydrolysate by Mucor and Fusarium species has been investigated, with the following results. Both Mucor and Fusarium species are able to ferment various sugars and alditols, including d-glucose, pentoses and xylitol, to ethanol. Mucor is able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. Fusarium F5 is not able to ferment sugar-cane bagasse hemicellulose hydrolysate to ethanol. During fermentation of hemicellulose hydrolysates, d-glucose was utilized first, followed by d-xylose and l-arabinose. Small amounts of xylitol were produced by Mucor from d-xylose through oxidoreduction reactions, presumably mediated by the enzyme aldose reductase1 (alditol: NADP+ 1-oxidoreductase, EC 1.1.1.21). For pentose fermentation, d-xylose was the preferred substrate. Only small amounts of ethanol were produced from l-arabinose and d-arabitol. No ethanol was produced from l-xylose, d-arabinose or l-arabitol.  相似文献   
8.
In a medium containing 40 g ethanol l–1, laccase production by Trametes versicolor was 2.6 unit per ml of the supernatant, which was over 20 times higher than that without ethanol. Laccase activity with ethanol was quite comparable to that with the well-known inducers such as veratryl alcohol, xylidine and guaiacol. With other white-rot fungi, Coriolus hirsutus and Grifola frondosa, ethanol had a similar stimulatory effect on laccase production.  相似文献   
9.
Comparative phytochemical analyses of hydroalcoholic (50% EtOH) extracts from roots of S. miltiorrhiza (SM) and S. przewalskii (SP) were performed using two complementary LC–MS systems: the first system HPLC-DAD-MSn an ion trap mass spectrometer and the second system consisted high resolution MS/MS Orbitrap mass spectrometer. The individual compounds were identified using a previously published approach via comparison of the exact molecular masses, mass spectra and retention times to those of standard compounds, online available databases and literature data. Moreover, the determination of antioxidative activities of extracts by DPPH and FRAP methods was carried out. Analysis allowed to identify 39 chemical compounds in extracts from both species. Extract from root of SP differs from SM in the presence of several metabolites such as: przewalskinic acid and their derivatives, przewaquinone C, przewaquinonate A, glycosides of rosmarinic acid, methyltanshinonate, whereas tanshinones, salvianolic acids and lithospermic acids occurred in both species. Moreover, it was shown that hydroalcoholic extract from roots of SM exerted stronger antioxidant properties in a FRAP test (max. 323.92 μM Fe2+/L) and in DPPH test (max. 78.64 nM TE) in comparison with SP extract.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号